1,138 research outputs found

    The Application of Preconditioned Alternating Direction Method of Multipliers in Depth from Focal Stack

    Get PDF
    Post capture refocusing effect in smartphone cameras is achievable by using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map which has been an open issue for decades. To tackle this issue, in this paper, a framework is proposed based on Preconditioned Alternating Direction Method of Multipliers (PADMM) for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy and occlusion handling, the optimization function of the proposed method can, in fact, converge faster and better than state of the art methods. The evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against 5 other methods. Preliminary results indicate that the proposed method has a better performance in terms of structural accuracy and optimization in comparison to the current state of the art methods.Comment: 15 pages, 8 figure

    Deep Neural Network and Data Augmentation Methodology for off-axis iris segmentation in wearable headsets

    Full text link
    A data augmentation methodology is presented and applied to generate a large dataset of off-axis iris regions and train a low-complexity deep neural network. Although of low complexity the resulting network achieves a high level of accuracy in iris region segmentation for challenging off-axis eye-patches. Interestingly, this network is also shown to achieve high levels of performance for regular, frontal, segmentation of iris regions, comparing favorably with state-of-the-art techniques of significantly higher complexity. Due to its lower complexity, this network is well suited for deployment in embedded applications such as augmented and mixed reality headsets

    Smart Augmentation - Learning an Optimal Data Augmentation Strategy

    Get PDF
    A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks(DNN). There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method which we call Smart Augmentation and we show how to use it to increase the accuracy and reduce overfitting on a target network. Smart Augmentation works by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart Augmentation has shown the potential to increase accuracy by demonstrably significant measures on all datasets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases

    Assessing societal vulnerability of U.S. Pacific Northwest communities to storm induced coastal change

    Get PDF
    Progressive increases in storm intensities and extreme wave heights have been documented along the U.S. West Coast. Paired with global sea level rise and the potential for an increase in El Niño occurrences, these trends have substantial implications for the vulnerability of coastal communities to natural coastal hazards. Community vulnerability to hazards is characterized by the exposure, sensitivity, and adaptive capacity of human-environmental systems that influence potential impacts. To demonstrate how societal vulnerability to coastal hazards varies with both physical and social factors, we compared community exposure and sensitivity to storm-induced coastal change scenarios in Tillamook (Oregon) and Pacific (Washington) Counties. While both are backed by low-lying coastal dunes, communities in these two counties have experienced different shoreline change histories and have chosen to use the adjacent land in different ways. Therefore, community vulnerability varies significantly between the two counties. Identifying the reasons for this variability can help land-use managers make decisions to increase community resilience and reduce vulnerability in spite of a changing climate. (PDF contains 4 pages

    Analysis of interaction and co-editing patterns amongst OpenStreetMap contributors

    Get PDF
    OpenStreetMap (OSM) is a very well known and popular Volunteered Geographic Information (VGI) project on the Internet. In January 2013 OSM gained its one millionth registered member. Several studies have shown that only a small percentage of these registered members carry out the large majority of the mapping and map editing work. In this article we discuss results from a social-network based analysis of seven major cities in OSM in an effort to understand if there is quantitative evidence of interaction and collaboration between OSM members in these areas. Are OSM contributors working on their own to build OSM databases in these cities or is there evidence of collaboration between OSM contributors? We find that in many cases high frequent contributors (“senior mappers”) perform very large amounts of mapping work on their own but do interact (edit/update) contributions from lower frequency contributors

    Integrating Volunteered Geographic Information into Pervasive Health Computing Applications

    Get PDF
    In this paper we describe the potential for using Volunteered Geographic Information (VGI) in pervasive health computing. We use the OpenStreetMap project as a case-study of a successful VGI project and investigate how it can be expanded and used as a source of spatial information for pervasive computing technologies particularly in the area of access to information on healthcare services
    corecore